Nanovectors (NVs), based on nanostructured matter such as nanoparticles (NPs), have proven to perform as excellent drug delivery systems. However, due to the great variety of potential NVs, including NPs materials and their functionalization, in addition to the plethora of molecules that could transport, this fields presents a great challenge in terms of resources to find NVs with the most optimal physicochemical properties such as particle size and drug loading, where most of efforts rely on trial and error experimentation. In this regard, Artificial intelligence (AI) and metaheuristic algorithms offer efficient of the state-of-the-art modelling and optimization, respectively. This review focuses, through a systematic search, on the use of artificial intelligence and metaheuristic algorithms for nanoparticle synthesis in drug delivery systems. The main findings are: neural networks are better at modelling NVs properties than linear regression algorithms and response surface methodology, there is a very limited number of studies comparing AI or metaheuristic algorithm, and there is no information regarding the appropriateness of calculations of the sample size. Based on these findings, multilayer perceptron artificial neural network and adaptive neuro fuzzy inference system were tested for their modelling performance with a NV dataset; finding the latter the better algorithm. For metaheuristic algorithms, benchmark functions were optimized with cuckoo search, firefly algorithm, genetic algorithm and symbiotic organism search; finding cuckoo search and symbiotic organism search with the best performance. Finally, methods to estimate appropriate sample size for AI algorithms are discussed.


翻译:以纳米粒子(NPs)等纳米结构物质为基础,纳米体(NVs)的纳米体(NVs)已被证明是出色的药物交付系统,但是,由于潜在的NVs(包括NPs材料及其功能化)多种多样,包括NPs材料及其功能化,以及可运输的分子过多,这个领域在寻找具有最优化物理化学特性的NV(如颗粒大小和药物装载)的资源方面构成巨大挑战,因为大部分努力都依赖于试验和误差实验。在这方面,人工智能和美经算算法分别提供了最先进的药物交付系统(NPs)的高效性能。本审查的重点是通过系统搜索,在药物交付系统中使用人工智能和美经算法合成纳米粒子。主要结论是:神经网络比线性回归算法和应变表法要好得多,对AI或美经运算算法的研究数量非常有限,而且没有关于计算样本规模的搜索能力的信息。根据人工智能算算法,在DNA基准值上,对神经值进行更精确的测试。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Arxiv
0+阅读 · 2022年2月14日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Top
微信扫码咨询专知VIP会员