This essay seeks to tie together thoughts on the political economy of academia, the inequities in access to the academic means of production and decolonial practice in data empowerment. To demonstrate this I will provide a brief analysis of the neo-colonial, extractive practices of the Western Academy, introduce concepts around decolonial AI practice and then use these to form an investigative framework. Using this framework, I present a brief case study of the AirQo project in Kampala, Uganda. The project aims to deploy a low-cost air pollution sensor network across the city, using machine learning methods to calibrate these sensors against reference instruments, providing high-quality air pollution data at a far lower cost.
翻译:本文试图将学术界政治经济学、获得学术生产手段方面的不平等以及数据赋权方面的非殖民主义做法等思想结合起来,为证明这一点,我将简要分析西方学院的新殖民主义和采掘做法,介绍关于非殖民主义的大赦国际做法的概念,然后利用这些概念形成一个调查框架。我利用这个框架,对乌干达坎帕拉的AirQo项目进行简短的个案研究。该项目的目的是在全市部署一个低成本空气污染传感器网络,利用机器学习方法校准这些传感器与参考工具,以低得多的成本提供高质量的空气污染数据。