In the last decade, machine translation has become a popular means to deal with multilingual digital content. By providing higher quality translations, obfuscating the source language of a text becomes more attractive. In this paper, we analyze the ability to detect the source language from the translated output of two widely used commercial machine translation systems by utilizing machine-learning algorithms with basic textual features like n-grams. Evaluations show that the source language can be reconstructed with high accuracy for documents that contain a sufficient amount of translated text. In addition, we analyze how the document size influences the performance of the prediction, as well as how limiting the set of possible source languages improves the classification accuracy.


翻译:在过去十年中,机器翻译已成为处理多语种数字内容的流行手段。 通过提供更高质量的翻译,混淆文本的来源语言变得更加吸引人。 在本文中,我们分析利用机器学习算法及其基本文字特征如n-gram等,从两种广泛使用的商用机器翻译系统的翻译输出中检测源语言的能力。 评估表明,对于含有足够数量翻译文本的文件,源语言可以非常精确地重建。 此外,我们分析文件大小如何影响预测的性能,以及限制一套可能的源语言如何提高分类准确性。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员