We proposed a new modeling method to promote the performance of prohibited items recognition via X-ray image. We analyzed the characteristics of prohibited items and X-ray images. We found the fact that the scales of some items are too small to be recognized which encumber the model performance. Then we adopted a set of data augmentation and modified the model to adapt the field of prohibited items recognition. The Convolutional Block Attention Module(CBAM) and rescoring mechanism has been assembled into the model. By the modification, our model achieved a mAP of 89.9% on SIXray10, mAP of 74.8%.


翻译:我们提出了一种新的示范方法,通过X光图像促进违禁物品识别的性能。我们分析了违禁物品和X光图像的特性。我们发现某些物品的大小太小,无法识别哪些是模型性能的隐含物。然后我们通过了一套数据增强和修改模型,以调整违禁物品识别领域。在模型中集聚了革命性屏蔽注意模块(CBAM)和重新校正机制。经过修改,我们的模型在Sixray10上实现了89.9%的 mAP,在74.8%的 mAP上实现了89.9%的 mAP。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2020年2月12日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
Top
微信扫码咨询专知VIP会员