We proposed a new modeling method to promote the performance of prohibited items recognition via X-ray image. We analyzed the characteristics of prohibited items and X-ray images. We found the fact that the scales of some items are too small to be recognized which encumber the model performance. Then we adopted a set of data augmentation and modified the model to adapt the field of prohibited items recognition. The Convolutional Block Attention Module(CBAM) and rescoring mechanism has been assembled into the model. By the modification, our model achieved a mAP of 89.9% on SIXray10, mAP of 74.8%.
翻译:我们提出了一种新的示范方法,通过X光图像促进违禁物品识别的性能。我们分析了违禁物品和X光图像的特性。我们发现某些物品的大小太小,无法识别哪些是模型性能的隐含物。然后我们通过了一套数据增强和修改模型,以调整违禁物品识别领域。在模型中集聚了革命性屏蔽注意模块(CBAM)和重新校正机制。经过修改,我们的模型在Sixray10上实现了89.9%的 mAP,在74.8%的 mAP上实现了89.9%的 mAP。