Personalized news recommendation is an essential technique for online news services. News articles usually contain rich textual content, and accurate news modeling is important for personalized news recommendation. Existing news recommendation methods mainly model news texts based on traditional text modeling methods, which is not optimal for mining the deep semantic information in news texts. Pre-trained language models (PLMs) are powerful for natural language understanding, which has the potential for better news modeling. However, there is no public report that show PLMs have been applied to news recommendation. In this paper, we report our work on exploiting pre-trained language models to empower news recommendation. Offline experimental results on both monolingual and multilingual news recommendation datasets show that leveraging PLMs for news modeling can effectively improve the performance of news recommendation. Our PLM-empowered news recommendation models have been deployed to the Microsoft News platform, and achieved significant gains in terms of both click and pageview in both English-speaking and global markets.
翻译:个人化新闻建议是在线新闻服务的基本技术。新闻文章通常包含丰富的文字内容,准确的新闻模型对于个人化新闻建议很重要。现有的新闻建议方法主要是基于传统文本模型方法的示范新闻文本,这对挖掘新闻文本中的深层语义信息来说并不理想。预先培训的语言模式对自然语言理解很有帮助,有更好的新闻模型的潜力。然而,没有公开报告显示PLM已经应用到新闻建议中。在本文中,我们报告了我们利用预先培训的语言模型来增强新闻建议能力的工作。单语和多语种新闻建议数据集的离线实验结果显示,利用PLMs进行新闻模型可以有效地改善新闻建议的绩效。我们的PLM驱动新闻建议模式被应用到微软新闻平台,并在英语和全球市场上的点击和页面浏览两方面都取得了重大收益。