Ab initio structure prediction methods have been nowadays widely used as powerful tools for structure searches and material discovery. However, they are generally restricted to small systems owing to the heavy computational cost of underlying density functional theory (DFT) calculations. In this work, by combining state-of-art machine learning (ML) potential with our in-house developed CALYPSO structure prediction method, we developed two acceleration schemes for structure prediction toward large systems, in which ML potential is pre-constructed to fully replace DFT calculations or trained in an on-the-fly manner from scratch during the structure searches. The developed schemes have been applied to medium- and large-sized boron clusters, which are challenging cases for both construction of ML potentials and extensive structure searches. Experimental structures of B36 and B40 clusters can be readily reproduced, and the putative global minimum structure for B84 cluster is proposed, where substantially less computational cost by several orders of magnitude is evident if compared with full DFT-based structure searches. Our results demonstrate a viable route for structure prediction toward large systems via the combination of state-of-art structure prediction methods and ML techniques.
翻译:由于基本密度功能理论(DFT)的计算成本很高,因此这些预测方法一般限于小型系统,在这项工作中,通过将最先进的机器学习潜力与我们内部开发的CALYPSO结构预测方法相结合,我们制定了两个大型系统结构预测加速计划,其中ML潜力是预先构建的,以完全取代DFT的计算,或者在结构搜索期间从零开始以飞行方式接受培训。已开发的计划适用于中大型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨型巨