To use neural networks in safety-critical settings it is paramount to provide assurances on their runtime operation. Recent work on ReLU networks has sought to verify whether inputs belonging to a bounded box can ever yield some undesirable output. Input-splitting procedures, a particular type of verification mechanism, do so by recursively partitioning the input set into smaller sets. The efficiency of these methods is largely determined by the number of splits the box must undergo before the property can be verified. In this work, we propose a new technique based on shadow prices that fully exploits the information of the problem yielding a more efficient generation of splits than the state-of-the-art. Results on the Airborne Collision Avoidance System (ACAS) benchmark verification tasks show a considerable reduction in the partitions generated which substantially reduces computation times. These results open the door to improved verification methods for a wide variety of machine learning applications including vision and control.
翻译:为了在安全临界环境下使用神经网络,至关重要的是要保证运行时间运行。关于雷路网络的近期工作试图核实属于封闭盒的投入是否会产生一些不受欢迎的产出。输入分离程序,一种特殊的核查机制,通过将输入分成小部分的方式这样做。这些方法的效率主要取决于在核实财产之前必须进行的分割数量。在这项工作中,我们提议一种基于影子价格的新方法,充分利用这一问题的信息,产生比最新技术更有效率的分裂代数。空载避免碰撞系统基准核查任务的结果显示,产生的分割区大大缩小,大大缩短了计算时间。这些结果为改进包括视觉和控制在内的各种机器学习应用的核查方法打开了大门。