Deep neural networks are an attractive tool for compressing the control policy lookup tables in systems such as the Airborne Collision Avoidance System (ACAS). It is vital to ensure the safety of such neural controllers via verification techniques. The problem of analyzing ACAS Xu networks has motivated many successful neural network verifiers. These verifiers typically analyze the internal computation of neural networks to decide whether a property regarding the input/output holds. The intrinsic complexity of neural network computation renders such verifiers slow to run and vulnerable to floating-point error. This paper revisits the original problem of verifying ACAS Xu networks. The networks take low-dimensional sensory inputs with training data provided by a precomputed lookup table. We propose to prepend an input quantization layer to the network. Quantization allows efficient verification via input state enumeration, whose complexity is bounded by the size of the quantization space. Quantization is equivalent to nearest-neighbor interpolation at run time, which has been shown to provide acceptable accuracy for ACAS in simulation. Moreover, our technique can deliver exact verification results immune to floating-point error if we directly enumerate the network outputs on the target inference implementation or on an accurate simulation of the target implementation.


翻译:深神经网络是压缩气载碰撞避免系统(ACAS)等系统中控制政策查看表格的有吸引力的工具。 关键是要通过核查技术确保这些神经控制器的安全。 分析ACAS Xu 网络的问题促使了许多成功的神经网络验证器。 这些验证器通常分析神经网络的内部计算,以决定输入/输出的属性是否持有。 神经网络的内在复杂性使得这种验证器运行缓慢,容易受到浮点错误的影响。 本文回顾了最初核查ACAS Xu 网络的问题。 网络采用低维感官输入, 使用预先配置的检查表提供的培训数据。 我们提议将输入的四分化层预先纳入网络。 量化使输入状态查点允许通过输入状态查点进行有效核查, 其复杂性与四分化空间的大小相连接。 量化相当于运行时的近邻内插, 已经显示在模拟中为ACAS Xu网络提供可接受的准确的准确度。 此外,我们的技术可以将精确的网络执行结果传送到直接的模拟数据。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
92+阅读 · 2021年6月3日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
84+阅读 · 2020年6月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Expressivity and Trainability of Quadratic Networks
Arxiv
0+阅读 · 2021年10月12日
Arxiv
13+阅读 · 2021年5月25日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员