The popularity of Android OS has made it an appealing target to malware developers. To evade detection, including by ML-based techniques, attackers invest in creating malware that closely resemble legitimate apps. In this paper, we propose GUIDED RETRAINING, a supervised representation learning-based method that boosts the performance of a malware detector. First, the dataset is split into "easy" and "difficult" samples, where difficulty is associated to the prediction probabilities yielded by a malware detector: for difficult samples, the probabilities are such that the classifier is not confident on the predictions, which have high error rates. Then, we apply our GUIDED RETRAINING method on the difficult samples to improve their classification. For the subset of "easy" samples, the base malware detector is used to make the final predictions since the error rate on that subset is low by construction. For the subset of "difficult" samples, we rely on GUIDED RETRAINING, which leverages the correct predictions and the errors made by the base malware detector to guide the retraining process. GUIDED RETRAINING focuses on the difficult samples: it learns new embeddings of these samples using Supervised Contrastive Learning and trains an auxiliary classifier for the final predictions. We validate our method on four state-of-the-art Android malware detection approaches using over 265k malware and benign apps, and we demonstrate that GUIDED RETRAINING can reduce up to 40.41% prediction errors made by the malware detectors. Our method is generic and designed to enhance the classification performance on a binary classification task. Consequently, it can be applied to other classification problems beyond Android malware detection.


翻译:Android OS 的普及使得它成为恶意软件开发者的吸引力目标。 为了躲避检测, 包括以 ML 为基础的技术, 攻击者投资创建与合法应用程序非常相似的恶意软件。 在本文中, 我们提议使用我们的 GUIDED RETRAININING 方法, 这是一种监督的演示学习方法, 提高恶意软件检测器的性能。 首先, 数据集分为“ 容易” 和“ 困难” 样本, 与恶意软件检测器产生的预测概率有关: 对于困难的样本, 我们依靠GUID41 RETRAININING, 分类方法使得分类者对预测不有信心, 并且有很高的误差率。 然后, 我们用我们的GUDEDRETRAIN 方法, 用来指导错误软件的升级。 基础的错误检测和智能智能智能模型, 我们用这个工具来引导我们 的错误的货币变现, 我们的变现方法, 我们用一个难的变现方法, 我们的变的变数的变的变数 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Detect what you want: Target Sound Detection
Arxiv
0+阅读 · 2022年7月7日
Malware and Ransomware Detection Models
Arxiv
0+阅读 · 2022年7月5日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员