Cybersecurity is essential, and attacks are rapidly growing and getting more challenging to detect. The traditional Firewall and Intrusion Detection system, even though it is widely used and recommended but it fails to detect new attacks, zero-day attacks, and traffic patterns that do not match with any configured rules. Therefore, Machine Learning (ML) can be an efficient and cost-reduced solution in cybersecurity. We used Netflow datasets to extract features after applying data analysis. Then, a selection process has been applied to compare these features with one another. Our experiments focus on how efficient machine learning algorithms can detect Bot traffic, Malware traffic, and background traffic. We managed to get 0.903 precision value from a dataset that has 6.5% Bot flows, 1.57% Normal flows, 0.18% Command&Control (C&C) flows, and 91.7% background flows, from 2,753,884 total flows. The results show low false-negative with few false-positive detections.


翻译:网络安全至关重要,而且攻击正在迅速增长,而且越来越难以探测。传统的防火墙和入侵探测系统尽管得到广泛使用和建议,但未能发现与任何配置规则不匹配的新攻击、零天攻击和交通模式。因此,机器学习(ML)可以成为网络安全的一个高效且成本降低的解决方案。我们在应用数据分析后,利用网络流数据集提取特征。然后,应用了一个选择程序来比较这些特征。我们的实验重点是高效的机器学习算法如何探测博特流量、马拉瓦尔流量和背景流量。我们设法从一个数据集中获得了0.903的精确值,该数据集的流量为6.5%的博特流量、1.57%的正常流量、0.18%的指挥和控制(C&C)流量和91.7%的背景流量,分别来自2 753 884个总流量。结果显示,低的虚假负值与少的虚假检测结果。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员