In this paper, we propose a Jacobi-type algorithm to solve the low rank orthogonal approximation problem of symmetric tensors. This algorithm includes as a special case the well-known Jacobi CoM2 algorithm for the approximate orthogonal diagonalization problem of symmetric tensors. We first prove the weak convergence of this algorithm, \textit{i.e.} any accumulation point is a stationary point. Then we study the global convergence of this algorithm under a gradient based ordering for a special case: the best rank-2 orthogonal approximation of 3rd order symmetric tensors, and prove that an accumulation point is the unique limit point under some conditions. Numerical experiments are presented to show the efficiency of this algorithm.
翻译:在本文中,我们提出一个雅各比式算法,以解决对称强量的低等级正对近近似问题。 这个算法作为一个特例包括众所周知的对称强的近近正正正正正正对角化问题的雅各比 CoM2 算法。 我们首先证明这个算法, \ textit{ i. e.} 的任何累积点都是一个固定点。 然后我们研究这个算法在基于梯度的特例排序下的全球趋同性: 3级正对称强量的最好的一级至正正正对近近似3级正正正反向近似值, 并证明积累点在某些条件下是独特的极限点。 数字实验展示了这种算法的效率。