RAN-agnostic communications can identify intrinsic features of the unknown signal without any prior knowledge, with which incompatible RANs in the same unlicensed band could achieve better coexistence performance than today's LBT-based coexistence. Blind modulation identification is its key building block, which blindly identifies the modulation type of an incompatible signal without any prior knowledge. Recent blind modulation identification schemes are built upon deep neural networks, which are limited to single-carrier signal recognition thus not pragmatic for identifying spectro-temporal OFDMA signals whose modulation varies with time and frequency. Therefore, this paper proposes RiSi, a semantic segmentation neural network designed to work on OFDMA's spectrograms, that employs flattened convolutions to better identify the grid-like pattern of OFDMA's resource blocks. We trained RiSi with a realistic OFDMA dataset including various channel impairments, and achieved the modulation identification accuracy of 86% on average over four modulation types of BPSK, QPSK, 16-QAM, 64-QAM. Then, we enhanced the generalization performance of RiSi by applying domain generalization methods while treating varying FFT size or varying CP length as different domains, showing that thus-generalized RiSi can perform reasonably well with unseen data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员