The seminal result of Johnson and Lindenstrauss on random embeddings has been intensively studied in applied and theoretical computer science. Despite that vast body of literature, we still lack of complete understanding of statistical properties of random projections; a particularly intriguing question is: why are the theoretical bounds that far behind the empirically observed performance? Motivated by this question, this work develops Johnson-Lindenstrauss distributions with optimal, data-oblivious, statistical confidence bounds. These bounds are numerically best possible, for any given data dimension, embedding dimension, and distortion tolerance. They improve upon prior works in terms of statistical accuracy, as well as exactly determine the no-go regimes for data-oblivious approaches. Furthermore, the corresponding projection matrices are efficiently samplable. The construction relies on orthogonal matrices, and the proof uses certain elegant properties of the unit sphere. The following techniques introduced in this work are of independent interest: a) a compact expression for distortion in terms of singular eigenvalues of the projection matrix, b) a parametrization linking the unit sphere and the Dirichlet distribution and c) anti-concentration bounds for the Dirichlet distribution. Besides the technical contribution, the paper presents applications and numerical evaluation along with working implementation in Python.


翻译:Johnson和Lindenstraus关于随机嵌入的开创性结果已经在应用和理论计算机科学中进行了深入研究。尽管有大量文献,我们仍然对随机预测的统计特性缺乏全面了解;一个特别令人感兴趣的问题是:为什么理论界限远远落后于经验观测的性能?受这一问题的驱使,这项工作以最佳、数据模糊、统计信任的界限发展了约翰逊-林登斯特拉斯的分布。这些界限在数字上是最好的,就任何特定的数据层面、嵌入层面和扭曲容忍度而言,这些界限在数字上是可能的。它们改进了先前的工作,在统计准确性方面,以及确切地决定了数据透视方法的无偏移制度。此外,相应的预测矩阵是可有效简化的。建筑依赖正方位矩阵,而且证据使用了单元范围的某些优雅的特性。在这项工作中采用的下列技术具有独立的兴趣:(a) 精确表达预测矩阵单电子价值、嵌入维度和扭曲,(b) 将单位领域和Dirichtal 分布和Dirrical-lical-ress) 以及Drichal-lictionsal-lishal-lishal-lippingsal-listedududsmalsmals) 。

0
下载
关闭预览

相关内容

专知会员服务
92+阅读 · 2021年6月3日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
165+阅读 · 2020年11月13日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关VIP内容
专知会员服务
92+阅读 · 2021年6月3日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
165+阅读 · 2020年11月13日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员