This paper considers the single-server Private Linear Transformation (PLT) problem when individual privacy is required. In this problem, there is a user that wishes to obtain $L$ linear combinations of a $D$-subset of messages belonging to a dataset of $K$ messages stored on a single server. The goal is to minimize the download cost while keeping the identity of every message required for the computation individually private. The individual privacy requirement implies that, from the perspective of the server, every message is equally likely to belong to the $D$-subset of messages that constitute the support set of the required linear combinations. We focus on the setting in which the matrix of coefficients pertaining to the required linear combinations is the generator matrix of a Maximum Distance Separable code. We establish lower and upper bounds on the capacity of PLT with individual privacy, where the capacity is defined as the supremum of all achievable download rates. We show that our bounds are tight under certain divisibility conditions. In addition, we present lower bounds on the capacity of the settings in which the user has a prior side information about a subset of messages.
翻译:本文考虑了个人隐私需要时单服务器私人线性变换(PLT)问题。 在这一问题中,用户希望获得属于单个服务器存储的美元电文数据集的一组电文的美元-美元分包的线性组合,目的是尽量减少下载费用,同时保持计算个人隐私所需的每条电文的身份。个人隐私要求意味着,从服务器的角度来看,每条电文都同样可能属于构成所需线性组合支持集的美元-美元分包。我们侧重于设定与所需线性组合有关的系数矩阵是最大距离分包代码的生成器矩阵。我们为PLT的个人隐私能力设定了下限和上限,其容量被定义为所有可实现下载率的suplemum。我们表明,从某些可辨性条件来看,我们的界限是紧凑的。此外,我们对于用户事先掌握关于电文子集信息的设置环境的能力提出了较低的限制。