Trigger-action platforms (TAPs) allow users to connect independent web-based or IoT services to achieve useful automation. They provide a simple interface that helps end-users create trigger-compute-action rules that pass data between disparate Internet services. Unfortunately, TAPs introduce a large-scale security risk: if they are compromised, attackers will gain access to sensitive data for millions of users. To avoid this risk, we propose eTAP, a privacy-enhancing trigger-action platform that executes trigger-compute-action rules without accessing users' private data in plaintext or learning anything about the results of the computation. We use garbled circuits as a primitive, and leverage the unique structure of trigger-compute-action rules to make them practical. We formally state and prove the security guarantees of our protocols. We prototyped eTAP, which supports the most commonly used operations on popular commercial TAPs like IFTTT and Zapier. Specifically, it supports Boolean, arithmetic, and string operations on private trigger data and can run 100% of the top-500 rules of IFTTT users and 93.4% of all publicly-available rules on Zapier. Based on ten existing rules that exercise a wide variety of operations, we show that eTAP has a modest performance impact: on average rule execution latency increases by 70 ms (55%) and throughput reduces by 59%.


翻译:触发动作平台( TAPs) 使用户能够连接独立的网络或 IoT 服务, 从而实现有用的自动化。 它们提供了一个简单的界面, 帮助终端用户创建触发计算规则, 将不同互联网服务的数据传递给不同的互联网服务。 不幸的是, TAP 引入了大规模安全风险: 如果它们暴露了, 袭击者将获得数百万用户的敏感数据。 为了避免这一风险, 我们提议 eTAP, 一个增强隐私的触发动作平台, 执行触发计算规则, 而不以简便方式存取用户的私人数据或了解计算结果的任何信息。 我们使用模糊的电路作为原始工具, 并利用触发计算规则的独特结构使其实用。 我们正式声明并证明我们协议的安全保障。 我们建立了eTAP 模型, 支持IMTT 和 Zapier 等流行的商业 TAP 上最常用的操作。 具体地, 它支持 Boolean、 complical- doction 操作, 并且可以运行IMT e- 500 规则的100% 原始功能, 和93. AP 规则的普通操作 都在运行中, 70- hows 。

0
下载
关闭预览

相关内容

ifttt = if this then that 即:如果符合某个条件则做某件事情。
ifttt.com/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
112+阅读 · 2020年11月16日
专知会员服务
39+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
13+阅读 · 2021年3月3日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关资讯
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员