Risk assessment for extreme events requires accurate estimation of high quantiles that go beyond the range of historical observations. When the risk depends on the values of observed predictors, regression techniques are used to interpolate in the predictor space. We propose the EQRN model that combines tools from neural networks and extreme value theory into a method capable of extrapolation in the presence of complex predictor dependence. Neural networks can naturally incorporate additional structure in the data. We develop a recurrent version of EQRN that is able to capture complex sequential dependence in time series. We apply this method to forecasting of flood risk in the Swiss Aare catchment. It exploits information from multiple covariates in space and time to provide one-day-ahead predictions of return levels and exceedances probabilities. This output complements the static return level from a traditional extreme value analysis and the predictions are able to adapt to distributional shifts as experienced in a changing climate. Our model can help authorities to manage flooding more effectively and to minimize their disastrous impacts through early warning systems.
翻译:洪水风险评估需要准确估计高分位数,超出了历史观测范围。当风险依赖于观察预测因素的值时,回归技术被用来在预测因素空间内插值。我们提出了EQRN模型,它结合了神经网络和极值理论的工具,能够在复杂预测依赖关系存在的情况下进行外推。神经网络可以自然地纳入数据中的额外结构。我们开发了EQRN的循环版本,能够捕捉时间序列中复杂的序列依赖关系。我们将这种方法应用于瑞士Aare流域的洪水风险预测。它可以利用空间和时间上的多个协变量信息,提供一日超过概率和返回水平预测。这种输出补充了传统的极值分析的静态返回水平,并且预测能够适应气候变化所体验的分布转变。我们的模型可以帮助有关部门通过早期预警系统更有效地管理洪水并最小化其灾害性影响。