A 3D point cloud is typically constructed from depth measurements acquired by sensors at one or more viewpoints. The measurements suffer from both quantization and noise corruption. To improve quality, previous works denoise a point cloud \textit{a posteriori} after projecting the imperfect depth data onto 3D space. Instead, we enhance depth measurements directly on the sensed images \textit{a priori}, before synthesizing a 3D point cloud. By enhancing near the physical sensing process, we tailor our optimization to our depth formation model before subsequent processing steps that obscure measurement errors. Specifically, we model depth formation as a combined process of signal-dependent noise addition and non-uniform log-based quantization. The designed model is validated (with parameters fitted) using collected empirical data from an actual depth sensor. To enhance each pixel row in a depth image, we first encode intra-view similarities between available row pixels as edge weights via feature graph learning. We next establish inter-view similarities with another rectified depth image via viewpoint mapping and sparse linear interpolation. This leads to a maximum a posteriori (MAP) graph filtering objective that is convex and differentiable. We optimize the objective efficiently using accelerated gradient descent (AGD), where the optimal step size is approximated via Gershgorin circle theorem (GCT). Experiments show that our method significantly outperformed recent point cloud denoising schemes and state-of-the-art image denoising schemes, in two established point cloud quality metrics.
翻译:3D点云通常是从传感器以一个或一个以上角度获得的深度测量中构造的。 测量结果既有量度也有噪音腐败。 为了提高质量, 先前的工作在将不完善的深度数据投射到 3D 空间后, 将点云的点云 / textit{ a posori} 缩小到 3D 空间。 相反, 我们直接在感测图像 \ textit{ a siti} 合成一个 3D 点云之前加强深度测量。 通过在物理感测过程附近加强我们的优化, 在随后的处理步骤掩盖测量错误之前, 把我们的深度形成模型调整为我们的深度形成模型。 具体来说, 我们模拟深度形成一个基于信号的质量添加和非统一日志日落日落日志的混合过程。 设计模型经过验证( 参数安装) 使用实际深度传感器收集的实证数据, 增强每个像素行之间的内部相似度, 我们首先通过地貌图学习, 将可用行像标之间的内部相似点进行校正相似点。 我们接下来通过浏览深度绘图和光线性内部内部内测, 线性内测, 。 这导致一个最高级的近的图像级平级平点, 通过我们最高级的平级平级平级的平级平级平级的平级的平底的平底图, 。