Legged robots that can operate autonomously in remote and hazardous environments will greatly increase opportunities for exploration into under-explored areas. Exteroceptive perception is crucial for fast and energy-efficient locomotion: perceiving the terrain before making contact with it enables planning and adaptation of the gait ahead of time to maintain speed and stability. However, utilizing exteroceptive perception robustly for locomotion has remained a grand challenge in robotics. Snow, vegetation, and water visually appear as obstacles on which the robot cannot step~-- or are missing altogether due to high reflectance. Additionally, depth perception can degrade due to difficult lighting, dust, fog, reflective or transparent surfaces, sensor occlusion, and more. For this reason, the most robust and general solutions to legged locomotion to date rely solely on proprioception. This severely limits locomotion speed, because the robot has to physically feel out the terrain before adapting its gait accordingly. Here we present a robust and general solution to integrating exteroceptive and proprioceptive perception for legged locomotion. We leverage an attention-based recurrent encoder that integrates proprioceptive and exteroceptive input. The encoder is trained end-to-end and learns to seamlessly combine the different perception modalities without resorting to heuristics. The result is a legged locomotion controller with high robustness and speed. The controller was tested in a variety of challenging natural and urban environments over multiple seasons and completed an hour-long hike in the Alps in the time recommended for human hikers.
翻译:能够在偏远和危险的环境中自主操作的牵引机器人将大大增加探索到探索不足的地区的机会。 外观感知对于快速和节能的移动至关重要: 在与地形接触之前先观察地形,才能提前规划和调整运动步态,以保持速度和稳定。 但是,在机器人中,强力利用外观感知以移动动作仍是一个巨大的挑战。 雪花、 植被和水视觉显示是机器人无法踩踏~ 或完全因高反射而消失的障碍。 此外, 深度感知会因照明困难、 灰尘、 雾、 反射或透明表面、 传感器隐蔽等而退化。 因此, 与时间相比, 最稳健和一般的脱轨解决方案完全取决于运动速度和稳定性。 机器人在调整其胃前必须实际感觉出地形。 我们在这里展示了一种强健和一般的解决方案, 将深度感知度和直观感知感结合了腿部的深度感知知知知度。 我们利用基于关注的精度常的精度环境, 将精细的精细的精细感测和精细感测的精准的精细感测结果, 将精细感测的精准的精细感测到精准的精准的精细感测的精准的精细感测结果的精度结合到精准的精细感测结果, 。 。 在不断修的精准的精准的精准的精准的精度和感测的精细的精度和感测的精准的精准的精准的精准的精度的精度的精准的精准的精准的精准的精准的精准的精细的精准的精细的精细的精细的精度, 。