The syntactic categories of categorial grammar formalisms are structured units made of smaller, indivisible primitives, bound together by the underlying grammar's category formation rules. In the trending approach of constructive supertagging, neural models are increasingly made aware of the internal category structure, which in turn enables them to more reliably predict rare and out-of-vocabulary categories, with significant implications for grammars previously deemed too complex to find practical use. In this work, we revisit constructive supertagging from a graph-theoretic perspective, and propose a framework based on heterogeneous dynamic graph convolutions aimed at exploiting the distinctive structure of a supertagger's output space. We test our approach on a number of categorial grammar datasets spanning different languages and grammar formalisms, achieving substantial improvements over previous state of the art scores. Code will be made available at https://github.com/konstantinosKokos/dynamic-graph-supertagging
翻译:语法形式学的合成类别是由较小、不可分割的原始生物组成的结构单位,由基本语法的分类成型规则结合在一起。在建设性高压的倾向式方法中,神经模型日益意识到内部分类结构,这反过来又使它们能够更可靠地预测稀有和排外的类别,对以前被认为过于复杂而无法找到实际用途的语法具有重大影响。在这项工作中,我们从图表理论的角度重新审视建设性的超文本,并提议一个基于多变动态图集的框架,目的是利用超级塔格输出空间的独特结构。我们测试了我们的方法,对跨越不同语言和语法形式学的若干分类语法数据集进行了测试,从而大大改进了以往的艺术分数。代码将在https://github.com/konstantinosKokos/hild-graph-supertashing上公布。代码将在https://gthub.com/kenttinos-supplical-sulttating。