There are a number of mathematical formalisms of the term "outlier" in statistics, though there is no consensus on what the right notion ought to be. Accordingly, we try to give a consistent and robust definition for a specific type of outliers defined via order statistics. Our approach is based on ratios of partial sums of order statistics to investigate the tail behaviors of hypothetical and empirical distributions. We simulate our statistic on a set of distributions to mark potential outliers and use an algorithm to automatically select a cut-off point without the need of any further a priori assumption. Finally, we show the efficacy of our statistic by a simulation study on distinguishing two Pareto tails outside of the L\'{e}vy stable region.
翻译:统计中“ 外部” 一词有一些数学形式主义, 尽管对于正确的概念应该是什么还没有达成共识。 因此, 我们试图给通过顺序统计定义的特定类型的外部线给出一个一致和稳健的定义。 我们的方法是以部分秩序统计的比例为基础, 以调查假设和实证分布的尾部行为。 我们模拟一套分布统计, 以标记潜在外部线, 并使用算法自动选择一个截断点, 而不需要进一步的先验假设。 最后, 我们通过模拟研究, 将帕雷托的尾巴区别在L\' {e} 稳定区域之外, 来显示我们的统计数据的有效性 。