Dynamic prediction of causal effects under different treatment regimes conditional on an individual's characteristics and longitudinal history is an essential problem in precision medicine. This is challenging in practice because outcomes and treatment assignment mechanisms are unknown in observational studies, an individual's treatment efficacy is a counterfactual, and the existence of selection bias is often unavoidable. We propose a Bayesian framework for identifying subgroup counterfactual benefits of dynamic treatment regimes by adapting Bayesian g-computation algorithm (J. Robins, 1986; Zhou, Elliott, & Little, 2019) to incorporate multivariate generalized linear mixed-effects models. Unmeasured time-invariant factors are identified as subject-specific random effects in the assumed joint distribution of outcomes, time-varying confounders, and treatment assignments. Existing methods mostly assume no unmeasured confounding and focus on balancing the observed confounder distributions between different treatments, while our method allows the presence of time-invariant unmeasured confounding. We propose a sequential ignorability assumption based on treatment assignment heterogeneity, which is analogous to balancing the latent tendency toward each treatment due to unmeasured time-invariant factors beyond the observables. We use simulation studies to assess the sensitivity of the proposed method's performance to various model assumptions. The method is applied to observational clinical data to investigate the efficacy of continuously using mycophenolate in different subgroups of scleroderma patients who were treated with the drug.


翻译:在以个人特点和纵向历史为条件的不同治疗制度下对因果关系的动态预测是精密医学中的一个基本问题。这在实践中具有挑战性,因为在观察研究中,结果和治疗分配机制是未知的,个人治疗效果是一种反事实,选择偏差的存在往往是不可避免的。我们建议建立一个巴伊西亚框架,通过调整巴伊西亚的测算算算法(J. Robins,1986年;Zhou, Elliott, & Litt, 2019年),确定动态治疗制度在不同的治疗制度下产生的分组反实际效益,以纳入多变性普遍线性线性混合效应模型。在实际中,这是具有挑战性的时性差异因素被确定为在假设的结果、时间变化的曲解和治疗任务的联合分配中的特定随机效应。现有方法大多假设没有不作任何不测的混和集中,侧重于平衡观察到的不同治疗分布分布,而我们的方法允许存在时间变异的模型无法测量。我们提议基于治疗任务变异性的顺序忽略性假设,这与平衡每一种观察性反应趋势之间的潜移趋势,因为我们使用的测算方法是采用不同性的方法。我们使用的测算方法评估了各种测算方法,因此,采用了各种测算方法。我们采用的测算方法是采用不同的测算方法。</s>

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员