Dynamic prediction of causal effects under different treatment regimes conditional on an individual's characteristics and longitudinal history is an essential problem in precision medicine. This is challenging in practice because outcomes and treatment assignment mechanisms are unknown in observational studies, an individual's treatment efficacy is a counterfactual, and the existence of selection bias is often unavoidable. We propose a Bayesian framework for identifying subgroup counterfactual benefits of dynamic treatment regimes by adapting Bayesian g-computation algorithm (J. Robins, 1986; Zhou, Elliott, & Little, 2019) to incorporate multivariate generalized linear mixed-effects models. Unmeasured time-invariant factors are identified as subject-specific random effects in the assumed joint distribution of outcomes, time-varying confounders, and treatment assignments. Existing methods mostly assume no unmeasured confounding and focus on balancing the observed confounder distributions between different treatments, while our method allows the presence of time-invariant unmeasured confounding. We propose a sequential ignorability assumption based on treatment assignment heterogeneity, which is analogous to balancing the latent tendency toward each treatment due to unmeasured time-invariant factors beyond the observables. We use simulation studies to assess the sensitivity of the proposed method's performance to various model assumptions. The method is applied to observational clinical data to investigate the efficacy of continuously using mycophenolate in different subgroups of scleroderma patients who were treated with the drug.
翻译:在以个人特点和纵向历史为条件的不同治疗制度下对因果关系的动态预测是精密医学中的一个基本问题。这在实践中具有挑战性,因为在观察研究中,结果和治疗分配机制是未知的,个人治疗效果是一种反事实,选择偏差的存在往往是不可避免的。我们建议建立一个巴伊西亚框架,通过调整巴伊西亚的测算算算法(J. Robins,1986年;Zhou, Elliott, & Litt, 2019年),确定动态治疗制度在不同的治疗制度下产生的分组反实际效益,以纳入多变性普遍线性线性混合效应模型。在实际中,这是具有挑战性的时性差异因素被确定为在假设的结果、时间变化的曲解和治疗任务的联合分配中的特定随机效应。现有方法大多假设没有不作任何不测的混和集中,侧重于平衡观察到的不同治疗分布分布,而我们的方法允许存在时间变异的模型无法测量。我们提议基于治疗任务变异性的顺序忽略性假设,这与平衡每一种观察性反应趋势之间的潜移趋势,因为我们使用的测算方法是采用不同性的方法。我们使用的测算方法评估了各种测算方法,因此,采用了各种测算方法。我们采用的测算方法是采用不同的测算方法。</s>