The Stackelberg security game is played between a defender and an attacker, where the defender needs to allocate a limited amount of resources to multiple targets in order to minimize the loss due to adversarial attack by the attacker. While allowing targets to have different values, classic settings often assume uniform requirements to defend the targets. This enables existing results that study mixed strategies (randomized allocation algorithms) to adopt a compact representation of the mixed strategies. In this work, we initiate the study of mixed strategies for the security games in which the targets can have different defending requirements. In contrast to the case of uniform defending requirement, for which an optimal mixed strategy can be computed efficiently, we show that computing the optimal mixed strategy is NP-hard for the general defending requirements setting. However, we show that strong upper and lower bounds for the optimal mixed strategy defending result can be derived. We propose an efficient close-to-optimal Patching algorithm that computes mixed strategies that use only few pure strategies. We also study the setting when the game is played on a network and resource sharing is enabled between neighboring targets. Our experimental results demonstrate the effectiveness of our algorithm in several large real-world datasets.
翻译:Stackelberg 安全游戏是在捍卫者和攻击者之间玩耍的, 捍卫者需要将有限的资源分配给多个目标, 以尽量减少攻击者对抗性攻击造成的损失。 在允许目标具有不同的价值的同时, 经典设置往往会采取统一的要求来捍卫目标。 这使得研究混合战略( 随机分配算法) 的现有结果( 随机分配算法) 能够采用混合战略的缩略语。 在这项工作中, 我们开始研究安全游戏的混合战略, 目标可以有不同的防御要求。 与统一防御要求的情况相反, 最佳混合战略可以有效计算, 我们显示, 最佳混合战略的计算是坚硬的。 然而, 我们显示, 最佳混合战略保护结果的高度和下限可以导出。 我们建议一种高效的近于优化的补丁算法, 用来计算混杂战略, 只能使用很少的纯净战略。 我们还研究游戏在网络上的时间和相邻目标之间资源共享的设定。 我们的实验结果显示, 我们的算法在几个大真实世界数据集中的有效性 。