Neural ODE Processes approach the problem of meta-learning for dynamics using a latent variable model, which permits a flexible aggregation of contextual information. This flexibility is inherited from the Neural Process framework and allows the model to aggregate sets of context observations of arbitrary size into a fixed-length representation. In the physical sciences, we often have access to structured knowledge in addition to raw observations of a system, such as the value of a conserved quantity or a description of an understood component. Taking advantage of the aggregation flexibility, we extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting, and we validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
翻译:神经数据交换过程采用潜在的可变模型处理动态元学习问题,这种模型允许灵活地汇总背景信息,这种灵活性是从神经过程框架继承下来的,使该模型能够将任意大小的背景观测组合汇总成固定长度代表。 在物理科学方面,我们除了对系统进行原始观测外,还经常有机会获得结构化知识,例如节能数量的价值或所理解组成部分的描述。我们利用综合灵活性,扩大神经数据交换过程模型,在利用精密信息进行学习时使用更多的信息,我们通过实验来验证我们的扩展,显示模拟动态任务的准确性和校准性得到提高。