The spiked covariance model has gained increasing popularity in high-dimensional data analysis. A fundamental problem is determination of the number of spiked eigenvalues, $K$. For estimation of $K$, most attention has focused on the use of $top$ eigenvalues of sample covariance matrix, and there is little investigation into proper ways of utilizing $bulk$ eigenvalues to estimate $K$. We propose a principled approach to incorporating bulk eigenvalues in the estimation of $K$. Our method imposes a working model on the residual covariance matrix, which is assumed to be a diagonal matrix whose entries are drawn from a gamma distribution. Under this model, the bulk eigenvalues are asymptotically close to the quantiles of a fixed parametric distribution. This motivates us to propose a two-step method: the first step uses bulk eigenvalues to estimate parameters of this distribution, and the second step leverages these parameters to assist the estimation of $K$. The resulting estimator $\hat{K}$ aggregates information in a large number of bulk eigenvalues. We show the consistency of $\hat{K}$ under a standard spiked covariance model. We also propose a confidence interval estimate for $K$. Our extensive simulation studies show that the proposed method is robust and outperforms the existing methods in a range of scenarios. We apply the proposed method to analysis of a lung cancer microarray data set and the 1000 Genomes data set.


翻译:在高维数据分析中,激增的变差模型越来越受欢迎。 一个根本性的问题是确定加压的变差矩阵数量。 关于美元的估计, 大部分注意力集中在抽样同差矩阵的美元顶值上, 几乎没有调查使用美元顶值来估计美元顶值。 我们建议了一种原则性的方法, 将大宗的变差值纳入估计美元美元。 我们的方法对剩余变差矩阵规定了一种工作模型, 假设该变差矩阵是从伽马分布中提取的。 在这种模型下, 大部分的变差值与固定的参数分布的四分法几乎接近。 这促使我们提出一种两步方法: 第一步使用大宗的变差值来估计这种分布的参数, 第二步则利用这些参数来帮助估算美元。 由此得出的微变差矩阵模型是 美元基数矩阵矩阵表 。 我们的变差模型 3K 总体模型 显示一个高比值的模型 。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员