Random K-out graphs are receiving attention as a model to construct sparse yet well-connected topologies in distributed systems including sensor networks, federated learning, and cryptocurrency networks. In response to the growing heterogeneity in emerging real-world networks, where nodes differ in resources and requirements, inhomogeneous random K-out graphs, denoted by $H(n;\mu,K_n)$, were proposed recently. Motivated by practical settings where establishing links is costly and only a bounded choice of $K_n$ is feasible ($K_n = O(1)$), we study the size of the largest connected sub-network of $H(n;\mu,K_n)$, We first show that the trivial condition of $K_n \geq 2$ for all $n$ is sufficient to ensure that $H(n;\mu,K_n)$, contains a giant component of size $n-O(1)$ whp. Next, to model settings where nodes can fail or get compromised, we investigate the size of the largest connected sub-network in $H(n;\mu,K_n)$, when $d_n$ nodes are selected uniformly at random and removed from the network. We show that if $d_n=O(1)$, a giant component of size $n- \OO(1)$ persists for all $K_n \geq 2$ whp. Further, when $d_n=o(n)$ nodes are removed from $H(n;\mu,K_n)$, the remaining nodes contain a giant component of size $n(1-o(1))$ whp for all $K_n \geq 2$. We present numerical results to demonstrate the size of the largest connected component when the number of nodes is finite.


翻译:随机 K- out 图形最近被提出来, 作为一种模型, 在分布式系统中, 包括传感器网络、 联合学习和加密货币网络, 构建稀薄但有良好联系的表层。 在新兴真实世界网络中, 节点在资源和需求上各不相同, 以$H( n;\ mu, k_n) 表示的不相干随机 K- out 图情最近得到关注。 在建立链接费用昂贵且只有约束选择 $_n (k_n=O(1)美元) 的实用设置下, 我们研究最大的连接子网络 $( n;\ mu, K_n) 的大小。 我们首先显示, $( n); 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 最小的最小; 美元; 美元; 美元; 美元; 美元; 美元; 最小; 最小; 最小; 最小的部分; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元;

0
下载
关闭预览

相关内容

Explanation:网络。 Publisher:Wiley。 SIT: http://dblp.uni-trier.de/db/journals/networks/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
56+阅读 · 2021年1月26日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月26日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
56+阅读 · 2021年1月26日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月26日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
Top
微信扫码咨询专知VIP会员