Throughput Prediction is one of the primary preconditions for the uninterrupted operation of several network-aware mobile applications, namely video streaming. Recent works have advocated using Machine Learning (ML) and Deep Learning (DL) for cellular network throughput prediction. In contrast, this work has proposed a low computationally complex simple solution which models the future throughput as a multiple linear regression of several present network parameters and present throughput. It then feeds the variance of prediction error and measurement error, which is inherent in any measurement setup but unaccounted for in existing works, to a Kalman filter-based prediction-correction approach to obtain the optimal estimates of the future throughput. Extensive experiments across seven publicly available 5G throughput datasets for different prediction window lengths have shown that the proposed method outperforms the baseline ML and DL algorithms by delivering more accurate results within a shorter timeframe for inferencing and retraining. Furthermore, in comparison to its ML and DL counterparts, the proposed throughput prediction method is also found to deliver higher QoE to both streaming and live video users when used in conjunction with popular Model Predictive Control (MPC) based adaptive bitrate streaming algorithms.
翻译:暂无翻译