Incremental redundancy with ACK/NACK feedback produces a variable-length stop-feedback (VLSF) code constrained to have $m$ decoding times, with an ACK/NACK feedback to the transmitter at each decoding time. This paper focuses on the numerical evaluation of the maximal achievable rate of random VLSF codes as a function of $m$ for the binary-input additive white Gaussian noise channel, binary symmetric channel, and binary erasure channel (BEC). Leveraging Edgeworth and Petrov expansions, we develop tight approximations to the tail probability of length-$n$ cumulative information density that are accurate for any blocklength $n$. We reduce Yavas et al.'s non-asymptotic achievability bound on VLSF codes with $m$ decoding times to an integer program of minimizing the upper bound on the average blocklength subject to the average error probability, minimum gap, and integer constraints. We develop two distinct methods to solve this program. Numerical evaluations show that Polyanskiy's achievability bound for VLSF codes, which assumes $m = \infty$, can be approached with a small $m$ for all three channels. For BEC, we consider systematic transmission followed by random linear fountain coding. This allows us to obtain a new achievability bound stronger than a previous bound and new VLSF codes whose rate further outperforms Polyanskiy's bound.
翻译:使用 ACK/ NACK 的递增冗余反馈, 产生一个不同长度的中继断裂( VLSF) 代码, 限制为 美元解码时间, 限制为 美元解码时间, 每次解码时间, 都会有 ACK/ NACK 反馈给 发报机 。 本文的重点是对 VLSF 随机随机编码的最大可实现率进行数字评估, 以 美元解码时间为二进制添加的白高氏噪声频道、 二进制对称频道和二进制加宽隔热频道, 产生一个不同的方法 。 我们开发了两种不同的方法来解决这个程序。 我们的量化评估显示, 美元长度和 美元累积的累加性信息密度密度对于任何区长 来说都是准确的 。 我们减少 Yavas 和 al. 将 VLSF 的无防盗用率约束在 VLSF 中, 将所有 系统化的系统传输渠道都限制为 。