Recently, two types of simulations (forward and backward simulations) and four types of bisimulations (forward, backward, forward-backward, and backward-forward bisimulations) between fuzzy automata have been introduced. If there is at least one simulation/bisimulation of some of these types between the given fuzzy automata, it has been proved that there is the greatest simulation/bisimulation of this kind. In the present paper, for any of the above-mentioned types of simulations/bisimulations we provide an effective algorithm for deciding whether there is a simulation/bisimulation of this type between the given fuzzy automata, and for computing the greatest one, whenever it exists. The algorithms are based on the method developed in [J. Ignjatovi\'c, M. \'Ciri\'c, S. Bogdanovi\'c, On the greatest solutions to certain systems of fuzzy relation inequalities and equations, Fuzzy Sets and Systems 161 (2010) 3081-3113], which comes down to the computing of the greatest post-fixed point, contained in a given fuzzy relation, of an isotone function on the lattice of fuzzy relations.
翻译:最近,在 fuzzy 自动成形器之间引入了两种模拟( 前向和后向模拟) 和四种类型( 前向、 前向、 前向和后向- 前向) 。 如果在给定的 fuzzy 自动成形器之间至少有一种模拟/ 模拟( 模拟/ 模拟), 已证明有这种类型的最伟大的模拟/ 模拟/ 模拟。 在本文件中, 对于上述任何类型的模拟/ 模拟/ 模拟, 我们提供了一个有效的算法, 用于确定给定的 fuzzy 自动成形器之间是否存在这种类型的模拟/ 模拟/ 和后向- 向- 反向模拟 。 算法基于 [ J. Ignjatović\c, M.\ Ciriri\c, S. Bogdanović\c,, 关于某些模糊性不平等和方程式系统的最大解决方案, Fuzzy Sets 和 Systems 161 (2010) 3081- 3113] 中开发的一种最大型的后端关系, 。