We propose a Bayesian hidden Markov model for analyzing time series and sequential data where a special structure of the transition probability matrix is embedded to model explicit-duration semi-Markovian dynamics. Our formulation allows for the development of highly flexible and interpretable models that can integrate available prior information on state durations while keeping a moderate computational cost to perform efficient posterior inference. We show the benefits of choosing a Bayesian approach for HSMM estimation over its frequentist counterpart, in terms of model selection and out-of-sample forecasting, also highlighting the computational feasibility of our inference procedure whilst incurring negligible statistical error. The use of our methodology is illustrated in an application relevant to e-Health, where we investigate rest-activity rhythms using telemetric activity data collected via a wearable sensing device. This analysis considers for the first time Bayesian model selection for the form of the explicit state dwell distribution. We further investigate the inclusion of a circadian covariate into the emission density and estimate this in a data-driven manner.
翻译:我们建议采用贝叶西亚隐藏的马尔科夫模型来分析时间序列和顺序数据,其中将过渡概率矩阵的特殊结构嵌入成明确的半马尔科维亚动态模型。我们的配方允许开发高度灵活和可解释的模型,这种模型可以将先前掌握的州长信息综合起来,同时保持适度的计算成本以进行有效的后推推力。我们展示了在模型选择和标外预测方面选择巴伊西亚方法对常住对应方进行巴伊西亚估计的好处,同时也突出了我们推论程序的计算可行性,同时造成了微不足道的统计错误。我们使用的方法在电子保健的应用中得到了说明,我们利用通过耗损感测设备收集的远程活动数据对休息节奏进行调查。我们第一次考虑的是,在明确的国家居住分布中选择贝伊西亚模式。我们进一步调查将锡尔加迪亚人变量纳入排放密度,并以数据驱动的方式估算。