In the last few years, there have been several revolutions in the field of deep learning, mainly headlined by the large impact of Generative Adversarial Networks (GANs). GANs not only provide an unique architecture when defining their models, but also generate incredible results which have had a direct impact on society. Due to the significant improvements and new areas of research that GANs have brought, the community is constantly coming up with new researches that make it almost impossible to keep up with the times. Our survey aims to provide a general overview of GANs, showing the latest architectures, optimizations of the loss functions, validation metrics and application areas of the most widely recognized variants. The efficiency of the different variants of the model architecture will be evaluated, as well as showing the best application area; as a vital part of the process, the different metrics for evaluating the performance of GANs and the frequently used loss functions will be analyzed. The final objective of this survey is to provide a summary of the evolution and performance of the GANs which are having better results to guide future researchers in the field.


翻译:在过去几年中,深度学习领域出现了几次革命,其中主要是由生成对抗网络(GANs)的巨大影响所引起的。GANs不仅提供了独特的模型架构定义,而且生成了令人难以置信的结果,直接影响着社会。由于GANs带来的显着改进和新的研究领域,社区不断推出新的研究,使跟上时代几乎是不可能的。我们的调查旨在提供GANs的概述,展示最新的架构、损失函数的优化、验证指标和最广泛被认可的变体的应用领域。将评估不同模型结构变体的效率,以及展示最佳的应用领域;作为过程的重要部分,将分析评估GANs性能的不同指标以及经常使用的损失函数。这项调查的最终目标是为那些有更好的表现的GANs提供演变和性能概要,以引导未来的研究者在这一领域。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
10+阅读 · 2021年11月10日
A Survey on Data Augmentation for Text Classification
Arxiv
103+阅读 · 2021年6月8日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
69+阅读 · 2022年6月13日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
10+阅读 · 2021年11月10日
A Survey on Data Augmentation for Text Classification
Arxiv
103+阅读 · 2021年6月8日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员