In this paper, we propose SACHER (soft actor-critic (SAC) with hindsight experience replay (HER)), which constitutes a class of deep reinforcement learning (DRL) algorithms. SAC is known as an off-policy model-free DRL algorithm based on the maximum entropy framework, which outperforms earlier DRL algorithms in terms of exploration, robustness and learning performance. However, in SAC, maximizing the entropy-augmented objective may degrade the optimality of the learning outcomes. HER is known as a sample-efficient replay method that enhances the performance of off-policy DRL algorithms by allowing them to learn from both failures and successes. We apply HER to SAC and propose SACHER to improve the learning performance of SAC. More precisely, SACHER achieves the desired optimal outcomes faster and more accurately than SAC, since HER improves the sample efficiency of SAC. We apply SACHER to the navigation and control problem of unmanned aerial vehicles (UAVs), where SACHER generates the optimal navigation path of the UAV under various obstacles in operation. Specifically, we show the effectiveness of SACHER in terms of the tracking error and cumulative reward in UAV operation by comparing them with those of state-of-the-art DRL algorithms, SAC and DDPG. Note that SACHER in UAV navigation and control problems can be applied to arbitrary models of UAVs.


翻译:在本文中,我们建议SACHER(SAC)(SAC)(SAC)(SAC)(SAC)(SAC)(SAC)(SAC)(SAC)(SAC),具有事后观察经验重现(HER)),这是一组深层强化学习(DRL)算法。SAC(SAC)被称为基于最大英特罗比框架的非政策模式DL(DRL)算法,在探索、稳健和学习性能方面优于早期DRL算法。然而,在SAC(SAC)中,最大限度地提高UCUCHER(UA)的样本效率可能会降低学习结果的最佳性能。她被称为一种抽样高效的重现方法,通过让它们从失败和成功中学习,提高DRL(DL)非政策性能。我们向SAC(SAC)应用HER(DL)算法的运行效率。更准确地说,SAC(UAC)在SARC(SA)的累积性操作中,SAR(SARC)的运行中,我们用SARC(SARC(SAR)的最佳导航和(SAR)的运行中)的轨误判中,具体地显示SARC(SAR)的系统(SA-A)在SARC(SAR)操作中)的最佳导航(SAR)的轨误)。

0
下载
关闭预览

相关内容

SAC:Selected Areas in Cryptography。 Explanation:密码术的选择区。 Publisher:Springer。 SIT:http://dblp.uni-trier.de/db/conf/sacrypt/
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
54+阅读 · 2019年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
最前沿:深度解读Soft Actor-Critic 算法
极市平台
54+阅读 · 2019年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员