Parameter estimation via M- and Z-estimation is equally powerful in semiparametric models for one-dimensional functionals due to a one-to-one relation between corresponding loss and identification functions via integration and differentiation. For multivariate functionals such as multiple moments, quantiles, or the pair (Value at Risk, Expected Shortfall), this one-to-one relation fails and not every identification function possesses an antiderivative. The most important implication is an efficiency gap: The most efficient Z-estimator often outperforms the most efficient M-estimator. We theoretically establish this phenomenon for pairs of quantiles at different levels and for (Value at Risk, Expected Shortfall), and illustrate the gap numerically.


翻译:通过 M 和 Z 估计的参数估计在一维功能的半参数模型中同样有力,因为相应的损失和通过集成和区分的识别功能之间存在一对一的关系。对于多变功能,如多个时段、四分位数或对子(风险价值、预期缺省),这种一对一关系失败,而不是每个识别功能都具有抗降解作用。最重要的影响是效率差距:最有效的Z- 估计符往往优于效率最高的M- 估计符数。我们理论上为不同级别和不同级别对等的量子体和(风险价值、预期缺省)确定了这种现象,并用数字来说明差距。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
专知会员服务
42+阅读 · 2021年4月23日
专知会员服务
50+阅读 · 2020年12月14日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员