This paper presents a framework based on matrices of monoids for the study of coupled cell networks. We formally prove within the proposed framework, that the set of results about invariant synchrony patterns for unweighted networks also holds for the weighted case. Moreover, the approach described allows us to reason about any multiedge and multiedge-type network as if it was single edge and single-edge-type. Several examples illustrate the concepts described. Additionally, an improvement of the coarsest invariant refinement algorithm to find balanced partitions is presented that exhibits a worst-case complexity of $ \mathbf{O}(\vert\mathcal{C}\vert^3) $, where $\mathcal{C}$ denotes the set of cells.
翻译:本文展示了一个基于单极矩阵的框架, 用于研究组合的单元格网络。 我们正式证明, 在提议的框架中, 关于未加权网络的无差异同步模式的一组结果对于加权案例同样有效。 此外, 描述的方法允许我们解释任何多端和多端网络, 仿佛它是单一边缘和单端类型。 几个例子说明了所描述的概念。 此外, 提出了改进最粗劣的变异精细精细算法, 以找到平衡的分区, 显示最坏的复杂度为$\ mathbf{O}(\vert\mathcal{C\\\\ vert}3) $, 其中$\mathcal{C} 表示一组单元格 。