Keyword spotting (KWS) in historical documents is an important tool for the initial exploration of digitized collections. Nowadays, the most efficient KWS methods are relying on machine learning techniques that require a large amount of annotated training data. However, in the case of historical manuscripts, there is a lack of annotated corpus for training. To handle the data scarcity issue, we investigate the merits of the self-supervised learning to extract useful representations of the input data without relying on human annotations and then using these representations in the downstream task. We propose ST-KeyS, a masked auto-encoder model based on vision transformers where the pretraining stage is based on the mask-and-predict paradigm, without the need of labeled data. In the fine-tuning stage, the pre-trained encoder is integrated into a siamese neural network model that is fine-tuned to improve feature embedding from the input images. We further improve the image representation using pyramidal histogram of characters (PHOC) embedding to create and exploit an intermediate representation of images based on text attributes. In an exhaustive experimental evaluation on three widely used benchmark datasets (Botany, Alvermann Konzilsprotokolle and George Washington), the proposed approach outperforms state-of-the-art methods trained on the same datasets.
翻译:历史文件中的关键字定位( KWS) 是首次探索数字化收藏的重要工具。 如今, 最有效的 KWS 方法依赖于机器学习技术, 需要大量的附加说明的培训数据。 但是, 在历史手稿方面, 缺乏附加说明的培训程序。 为了处理数据稀缺问题, 我们调查自监督学习的优点, 以便在不依赖人类注释的情况下获取输入数据的有用表达方式, 然后在下游任务中使用这些表达方式。 我们提议ST- KeyS, 一种基于视觉变压器的蒙面自动编码模型, 其基础是预培训阶段基于遮罩和预设模式的图像, 而不需要贴标签的数据。 在微调阶段, 将预培训的编码器纳入一个精密的神经网络模型, 以便改进输入图像图像嵌入的功能, 并在下游任务中使用这些图像显示方式。 我们提议, ST- KeyS( PHOC) 嵌入和利用基于文本属性的图像中间显示器。 在详细实验阶段评估中, 使用经过广泛训练的3项标准的Georgard- glas- Stategard 方法, 。</s>