We study the class of models for spatial data obtained from Cauchy convolution processes based on different types of kernel functions. We show that the resulting spatial processes have some appealing tail dependence properties, such as tail dependence at short distances and independence at long distances with suitable kernel functions. We derive the extreme-value limits of these processes, study their smoothness properties, and consider some interesting special cases, including Marshall-Olkin and H\"usler-Reiss processes. We further consider mixtures between such Cauchy processes and Gaussian processes, in order to have a separate control over the bulk and the tail dependence behaviors. Our proposed approach for estimating model parameters relies on matching model-based and empirical summary statistics, while the corresponding extreme-value limit models may be fitted using a pairwise likelihood approach. We show with a simulation study that our proposed inference approach yields accurate estimates. Moreover, the proposed class of models allows for a wide range of flexible dependence structures, and we demonstrate our new methodology by application to a temperature dataset. Our results indicate that our proposed model provides a very good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.
翻译:我们根据不同种类的内核功能,对从卷土形成过程获得的空间数据模型类别进行研究,我们发现,由此产生的空间过程具有一些吸引人的尾部依赖性,例如短距离尾部依赖性和长距离独立,具有适当的内核功能;我们从这些过程的极端价值限度中得出这些过程,研究其平滑性,并审议一些有趣的特殊案例,包括马歇尔-奥尔金和H\'usler-Reiss进程;我们进一步考虑这种Cauch进程和高斯进程之间的混合物,以便对散装和尾部依赖行为进行单独控制。我们提出的估计模型参数的方法依赖于匹配基于模型和经验的汇总统计数据,而相应的极端价值限模型则可能使用对称的可能性方法加以调整。我们通过模拟研究表明,我们提议的推断方法得出准确的估计。此外,拟议的模型类别允许广泛的灵活依赖结构,我们通过对温度数据集的应用来展示我们的新的方法。我们的结果表明,我们提议的模型非常适合数据,它能够准确地捕捉到散和尾部依赖结构。