Extreme floods cause casualties, and widespread damage to property and vital civil infrastructure. We here propose a Bayesian approach for predicting extreme floods using the generalized extreme-value (GEV) distribution within gauged and ungauged catchments. A major methodological challenge is to find a suitable parametrization for the GEV distribution when covariates or latent spatial effects are involved. Other challenges involve balancing model complexity and parsimony using an appropriate model selection procedure, and making inference using a reliable and computationally efficient approach. Our approach relies on a latent Gaussian modeling framework with a novel multivariate link function designed to separate the interpretation of the parameters at the latent level and to avoid unreasonable estimates of the shape and time trend parameters. Structured additive regression models are proposed for the four parameters at the latent level. For computational efficiency with large datasets and richly parametrized models, we exploit an accurate and fast approximate Bayesian inference approach. We applied our proposed methodology to annual peak river flow data from 554 catchments across the United Kingdom (UK). Our model performed well in terms of flood predictions for both gauged and ungauged catchments. The results show that the spatial model components for the transformed location and scale parameters, and the time trend, are all important. Posterior estimates of the time trend parameters correspond to an average increase of about $1.5\%$ per decade and reveal a spatial structure across the UK. To estimate return levels for spatial aggregates, we further develop a novel copula-based post-processing approach of posterior predictive samples, in order to mitigate the effect of the conditional independence assumption at the data level, and we show that our approach provides accurate results.
翻译:极端洪水造成人员伤亡,财产和重要民用基础设施普遍受损。我们在此提议采用贝叶西亚方法预测极端洪水,在测量和覆盖的集水区内使用普遍极端价值分布法预测极端洪水; 一项主要的方法挑战是,在涉及共变或潜在空间效应时,为GEV分布寻找适当的平衡; 其他挑战涉及使用适当的模型选择程序,平衡模型复杂性和隐蔽性,并采用可靠和计算高效的方法进行推断。 我们的方法依靠一个潜伏高斯建模框架,配有一个新的多变式链接功能,旨在区分对潜值参数的解释,并避免不合理地估计形状和时间趋势参数。 一项结构化的累加回归模型,用于潜伏的四种参数。 对于计算效率,我们利用一个精确和快速的模型,利用一种精确和快速的贝叶氏推断法方法。 我们采用了一种从整个英国的554个集水流中测算的峰值流数据。 我们的洪水预测模型,用于对潜伏水平的参数进行不同的解释,并避免不合理的估计。 一种结构化的累变的递回归模型, 显示我们十年中的重要时间趋势的数值, 显示我们十年内测测测测测测测值和测测测算结果。