This paper proposes a new self-attention based model for music score infilling, i.e., to generate a polyphonic music sequence that fills in the gap between given past and future contexts. While existing approaches can only fill in a short segment with a fixed number of notes, or a fixed time span between the past and future contexts, our model can infill a variable number of notes (up to 128) for different time spans. We achieve so with three major technical contributions. First, we adapt XLNet, an autoregressive model originally proposed for unsupervised model pre-training, to music score infilling. Second, we propose a new, musically specialized positional encoding called relative bar encoding that better informs the model of notes' position within the past and future context. Third, to capitalize relative bar encoding, we perform look-ahead onset prediction to predict the onset of a note one time step before predicting the other attributes of the note. We compare our proposed model with two strong baselines and show that our model is superior in both objective and subjective analyses.


翻译:本文提出一个新的基于自我注意的音乐评分模式, 即: 生成一个多声调音乐序列, 填补特定过去和今后背景之间的空白。 虽然现有方法只能填补一个短段, 有固定的注数, 或过去和今后背景之间的固定时间间隔, 我们的模式可以填充不同时间跨度的可变注数( 最多128个) 。 我们通过三大技术贡献来做到这一点。 首先, 我们调整了XLNet, 即一个自动递减模式, 最初为未受监督的模式预设培训而提出的自动递减模式, 以填补音乐评分 。 其次, 我们提出一个新的音乐专用位置编码, 称为相对条码, 更好地为说明过去和今后背景下的注数模型的位置提供参考。 第三, 为了利用相对条码, 我们进行直观的开始预测, 在预测注的其他属性之前, 提前一步预测注注的开始时间。 我们用两个强的基线对提议模型进行比较, 并显示我们的模型在客观和主观分析中都优。

0
下载
关闭预览

相关内容

【ICML2020】统一预训练伪掩码语言模型
专知会员服务
26+阅读 · 2020年7月23日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transformer中的相对位置编码
AINLP
5+阅读 · 2020年11月28日
Longformer:超越RoBERTa,为长文档而生的预训练模型
AI科技评论
4+阅读 · 2020年7月25日
LibRec 精选:EfficientNet、XLNet 论文及代码实现
LibRec智能推荐
5+阅读 · 2019年7月9日
20项任务全面碾压BERT,全新XLNet预训练模型
机器学习算法与Python学习
15+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
5+阅读 · 2021年9月30日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
26+阅读 · 2020年7月23日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Transformer中的相对位置编码
AINLP
5+阅读 · 2020年11月28日
Longformer:超越RoBERTa,为长文档而生的预训练模型
AI科技评论
4+阅读 · 2020年7月25日
LibRec 精选:EfficientNet、XLNet 论文及代码实现
LibRec智能推荐
5+阅读 · 2019年7月9日
20项任务全面碾压BERT,全新XLNet预训练模型
机器学习算法与Python学习
15+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员