In this paper, we investigate the strong convergence analysis of parareal algorithms for stochastic Maxwell equations with the damping term driven by additive noise. The proposed parareal algorithms proceed as two-level temporal parallelizable integrators with the stochastic exponential integrator as the coarse propagator and both the exact solution integrator and the stochastic exponential integrator as the fine propagator. It is proved that the convergence order of the proposed algorithms linearly depends on the iteration number. Numerical experiments are performed to illustrate the convergence order of the algorithms for different choices of the iteration number, the damping coefficient and the scale of noise.
翻译:暂无翻译