Accurate segmentation of the region of interest in medical images can provide an essential pathway for devising effective treatment plans for life-threatening diseases. It is still challenging for U-Net, and its state-of-the-art variants, such as CE-Net and DoubleU-Net, to effectively model the higher-level output feature maps of the convolutional units of the network mostly due to the presence of various scales of the region of interest, intricacy of context environments, ambiguous boundaries, and multiformity of textures in medical images. In this paper, we exploit multi-contextual features and several attention strategies to increase networks' ability to model discriminative feature representation for more accurate medical image segmentation, and we present a novel dual U-Net-based architecture named DoubleU-NetPlus. The DoubleU-NetPlus incorporates several architectural modifications. In particular, we integrate EfficientNetB7 as the feature encoder module, a newly designed multi-kernel residual convolution module, and an adaptive feature re-calibrating attention-based atrous spatial pyramid pooling module to progressively and precisely accumulate discriminative multi-scale high-level contextual feature maps and emphasize the salient regions. In addition, we introduce a novel triple attention gate module and a hybrid triple attention module to encourage selective modeling of relevant medical image features. Moreover, to mitigate the gradient vanishing issue and incorporate high-resolution features with deeper spatial details, the standard convolution operation is replaced with the attention-guided residual convolution operations, ...
翻译:在本文中,我们利用多种历史特征和若干关注战略来提高网络的以下能力:为更准确的医学图像分解而模拟具有歧视性的特征的模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化系统化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化系统化系统化系统化系统化模型化模型化模型化系统化系统化系统化系统化模型化模型化模型化模型化模型化模型化模型化模型