Pairwise learning is receiving increasing attention since it covers many important machine learning tasks, e.g., metric learning, AUC maximization, and ranking. Investigating the generalization behavior of pairwise learning is thus of significance. However, existing generalization analysis mainly focuses on the convex objective functions, leaving the nonconvex learning far less explored. Moreover, the current learning rates derived for generalization performance of pairwise learning are mostly of slower order. Motivated by these problems, we study the generalization performance of nonconvex pairwise learning and provide improved learning rates. Specifically, we develop different uniform convergence of gradients for pairwise learning under different assumptions, based on which we analyze empirical risk minimizer, gradient descent, and stochastic gradient descent pairwise learning. We first successfully establish learning rates for these algorithms in a general nonconvex setting, where the analysis sheds insights on the trade-off between optimization and generalization and the role of early-stopping. We then investigate the generalization performance of nonconvex learning with a gradient dominance curvature condition. In this setting, we derive faster learning rates of order $\mathcal{O}(1/n)$, where $n$ is the sample size. Provided that the optimal population risk is small, we further improve the learning rates to $\mathcal{O}(1/n^2)$, which, to the best of our knowledge, are the first $\mathcal{O}(1/n^2)$-type of rates for pairwise learning, no matter of convex or nonconvex learning. Overall, we systematically analyzed the generalization performance of nonconvex pairwise learning.


翻译: Pair Wisin 正在受到越来越多的关注, 因为它涵盖了许多重要的机器学习任务, 例如 公制学习 、 AUC 最大化 和 排名 。 因此, 调查双向学习的一般化行为非常重要 。 但是, 现有的一般化分析主要侧重于 convex 目标功能, 使得非 convex 学习的学习程度远不那么深入。 此外, 目前为对口学习的一般化表现所得出的学习率大多是比较慢的。 我们受这些问题的驱动, 我们研究非convex 对口学习的普及性表现, 并提供更好的学习率。 具体地说, 我们根据不同的假设, 为对口学习发展不同的渐渐趋一致的渐渐渐渐趋一致, 在此基础上, 我们系统分析实验风险最小的最小性下降率 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员