In this paper, we propose sentiment classification models based on BERT integrated with DRO (Distributionally Robust Classifiers) to improve model performance on datasets with distributional shifts. We added 2-Layer Bi-LSTM, projection layer (onto simplex or Lp ball), and linear layer on top of BERT to achieve distributionally robustness. We considered one form of distributional shift (from IMDb dataset to Rotten Tomatoes dataset). We have confirmed through experiments that our DRO model does improve performance on our test set with distributional shift from the training set.
翻译:在本文中,我们提出了基于BERT与DRO(分布式强力分类器)结合的情绪分类模型,以改进分布式转换数据集的模型性能。我们在BERT顶部添加了2-Layer Bi-LSTM、投影层(在简单x或Lp球上)和线性层,以实现分布式稳健。我们考虑了一种分布式转换形式(从IMDb数据集到罗滕托马托斯数据集 ) 。我们通过实验确认,我们的DRO模型的确通过从培训组中分配式转换,改善了我们测试组的性能。