Evaluating side-channel analysis (SCA) security is a complex process, involving applying several techniques whose success depends on human engineering. Therefore, it is crucial to avoid a false sense of confidence provided by non-optimal (failing) attacks. Different alternatives have emerged lately trying to mitigate human dependency, among which deep learning (DL) attacks are the most studied today. DL promise to simplify the procedure by e.g. evading the need for point of interest selection or the capability of bypassing noise and desynchronization, among other shortcuts. However, including DL in the equation comes at a price, since working with neural networks is not straightforward in this context. Recently, an alternative has appeared with the potential to mitigate this dependence without adding extra complexity: Estimation of Distribution Algorithm-based SCA. In this paper, we compare these two relevant methods, supporting our findings by experiments on various datasets.


翻译:评价侧道分析(SCA)安全是一个复杂的过程,涉及应用若干技术,这些技术的成功取决于人类工程。因此,必须避免非最佳(不利)攻击带来的虚假信任感。最近出现了不同的替代办法,试图减轻人类的依赖性,其中今天研究最多的是深度学习(DL)攻击行为。DL承诺简化程序,例如避免需要选择利益点或绕过噪音和消化的能力,以及其他捷径。但是,包括等式中的DL是价格的,因为在这方面与神经网络的合作并非直截了当。最近出现了一种替代办法,有可能减轻这种依赖性,但又不增加额外的复杂性:基于分配的Agorithm CAS。在本文中,我们比较了这两种相关方法,通过对各种数据集的实验来支持我们的调查结果。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月27日
Extreme events evaluation using CRPS distributions
Arxiv
0+阅读 · 2022年1月26日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员