Stochastic gradient-based optimisation for discrete latent variable models is challenging due to the high variance of gradients. We introduce a variance reduction technique for score function estimators that makes use of double control variates. These control variates act on top of a main control variate, and try to further reduce the variance of the overall estimator. We develop a double control variate for the REINFORCE leave-one-out estimator using Taylor expansions. For training discrete latent variable models, such as variational autoencoders with binary latent variables, our approach adds no extra computational cost compared to standard training with the REINFORCE leave-one-out estimator. We apply our method to challenging high-dimensional toy examples and training variational autoencoders with binary latent variables. We show that our estimator can have lower variance compared to other state-of-the-art estimators.


翻译:由于梯度差异很大,对离散潜伏变量模型采用基于梯度的惯性优化具有挑战性。我们对使用双重控制变异的计分函数估计器采用了差异减少技术。这些控制变异作用在主控变量的顶部,并试图进一步缩小总体估量器的差异。我们开发了使用泰勒扩展的REINFORCE 离任单一次估计器的双重控制变异功能。对于培训离散潜伏变量模型,例如具有二元潜伏变量的变异自动调整器,我们的方法与REINFORCE 留任一出一空的估测算器的标准培训相比,没有增加额外的计算成本。我们运用了方法来挑战高维微积分示例,并用二元潜伏变量培训变异的自动变异器。我们显示,我们的测算器与其他状态的估测算器相比,其差异较低。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
51+阅读 · 2021年8月8日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员