Network models are used to study interconnected systems across many physical, biological, and social disciplines. Such models often assume a particular network-generating mechanism, which when fit to data produces estimates of mechanism-specific parameters that describe how systems function. For instance, a social network model might assume new individuals connect to others with probability proportional to their number of pre-existing connections ('preferential attachment'), and then estimate the disparity in interactions between famous and obscure individuals with similar qualifications. However, without a means of testing the relevance of the assumed mechanism, conclusions from such models could be misleading. Here we introduce a simple empirical approach which can mechanistically classify arbitrary network data. Our approach compares empirical networks to model networks from a user-provided candidate set of mechanisms, and classifies each network--with high accuracy--as originating from either one of the mechanisms or none of them. We tested 373 empirical networks against five of the most widely studied network mechanisms and found that most (228) were unlike any of these mechanisms. This raises the possibility that some empirical networks arise from mixtures of mechanisms. We show that mixtures are often unidentifiable because different mixtures can produce functionally equivalent networks. In such systems, which are governed by multiple mechanisms, our approach can still accurately predict out-of-sample functional properties.


翻译:使用网络模型来研究许多物理、生物和社会学科的相互联系系统。这些模型往往假设一种特定的网络生成机制,这种机制在适合数据时产生机制特定参数的估计数,用以说明系统如何运行。例如,社会网络模型可能假设新的个人与其他人的连接概率与其先前存在的连接数量成比例(“优先附加”),然后估计具有类似资格的名人和模糊人之间的相互作用差异。然而,如果不以某种手段测试假设机制的相关性,这种模型的结论可能会产生误导。我们在这里采用一种简单的实验方法,可以机械地对任意网络数据进行分类。我们的方法将经验网络与由用户提供的候选机制组成的网络的模型进行比较,并将每个网络分类,其精度高,取决于机制中的任何一个机制或其中任何一个机制。我们测试了373个经验网络,而其中五个机制研究最广泛,发现大多数(228个)与这些机制不同。这增加了一些经验网络来自机制混合的可能性。我们发现混合物往往无法被识别,因为不同的混合物可以产生功能等同的网络。在这种系统中,由多种机制精确地管理。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
已删除
将门创投
3+阅读 · 2019年1月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月2日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
0+阅读 · 2021年2月25日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2019年3月15日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
已删除
将门创投
3+阅读 · 2019年1月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年3月2日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
0+阅读 · 2021年2月25日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2019年3月15日
Arxiv
10+阅读 · 2019年2月19日
Top
微信扫码咨询专知VIP会员