We show that the \kl{consistency problem} for Statistical EL ontologies, defined by Pe{\~{n}}aloza and Potyka, is ExpTime-hard. Together with existing ExpTime upper bounds, we conclude ExpTime-completeness of the logic. Our proof goes via a reduction from the consistency problem for EL extended with negation of atomic concepts.
翻译:我们显示,由Pe ⁇ n ⁇ aloza和Potyka定义的统计EL 的分类学的\kl{一致性问题}是穷困的。我们与现有的Exptime 上限一道,得出了逻辑的穷尽性。我们的证据是通过减少EL的连贯性问题,而EL则随着原子概念的否定而扩大。