Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works focused on studying kernel choices to boost test performances. However, the choices of (non-unique) Stein operators also have considerable effect on the test performances. Inspired by the standardisation technique that was originally developed to better derive approximation properties for normal distributions, we present a unifying framework, called standardisation-function kernel Stein discrepancy (Sf-KSD), to study different Stein operators in KSD-based tests for goodness-of-fit. We derive explicitly how the proposed framework relates to existing KSD-based tests and show that Sf-KSD can be used as a guide to develop novel kernel-based non-parametric tests on complex data scenarios, e.g. truncated distributions or compositional data. Experimental results demonstrate that the proposed tests control type-I error well and achieve higher test power than existing approaches.
翻译:基于内核施泰因差异(KSD)的非参数性良好测试程序是确认各种情景中一般非标准化分布的有希望的方法。现有工作的重点是研究内核选择,以提高测试性能。然而,(非非非非)施泰因操作员的选择也对测试性能产生了相当大的影响。在最初为更好地得出正常分布的近似特性而开发的标准化技术的启发下,我们提出了一个统一框架,称为标准化功能内核差异(Sf-KSD),以研究基于KSD的测试中不同斯坦级操作员如何与现有的基于KSD的测试相联系。我们明确揭示了拟议框架如何与现有的基于KSD的测试相联系,并表明Sf-KSD可用作在复杂的数据情景上开发基于新式内核的非参数测试的指南,例如断流分布或组成数据。实验结果表明,拟议的测试控制型I的误差很好,并取得了比现有方法更高的测试力。