A wide breadth of research has devised data augmentation approaches that can improve both accuracy and generalization performance for neural networks. However, augmented data can end up being far from the clean training data and what is the appropriate label is less clear. Despite this, most existing work simply uses one-hot labels for augmented data. In this paper, we show re-using one-hot labels for highly distorted data might run the risk of adding noise and degrading accuracy and calibration. To mitigate this, we propose a generic method AutoLabel to automatically learn the confidence in the labels for augmented data, based on the transformation distance between the clean distribution and augmented distribution. AutoLabel is built on label smoothing and is guided by the calibration-performance over a hold-out validation set. We successfully apply AutoLabel to three different data augmentation techniques: the state-of-the-art RandAug, AugMix, and adversarial training. Experiments on CIFAR-10, CIFAR-100 and ImageNet show that AutoLabel significantly improves existing data augmentation techniques over models' calibration and accuracy, especially under distributional shift.


翻译:广泛的研究已经设计出数据增强方法,可以提高神经网络的准确性和一般性能,然而,数据增强后可能最终远离清洁培训数据,而适当的标签则不那么清楚。尽管如此,大多数现有工作只是使用单热标签来增加数据。在本文中,我们展示了对高度扭曲的数据重新使用单热标签可能会增加噪音和降低准确性和校准的风险。为了减轻这一风险,我们提议了一种通用方法AutoLabel,以便根据清洁分布与扩大分布之间的转换距离,自动学习对增强数据标签的信心。AutoLabel建在标签上,以校准性能为指导,而不是按暂停的验证组进行。我们成功地将AutoLabel应用到三种不同的数据增强技术:最先进的RandAug、AugMix和对抗性培训。关于CFAR-10、CIFAR-100和图像Net的实验显示,AutoLabel大大改进了模型校准和准确性的现有数据增强技术,特别是在分发式转换期间。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员