Implicit copulas are the most common copula choice for modeling dependence in high dimensions. This broad class of copulas is introduced and surveyed, including elliptical copulas, skew $t$ copulas, factor copulas, time series copulas and regression copulas. The common auxiliary representation of implicit copulas is outlined, and how this makes them both scalable and tractable for statistical modeling. Issues such as parameter identification, extended likelihoods for discrete or mixed data, parsimony in high dimensions, and simulation from the copula model are considered. Bayesian approaches to estimate the copula parameters, and predict from an implicit copula model, are outlined. Particular attention is given to implicit copula processes constructed from time series and regression models, which is at the forefront of current research. Two econometric applications -- one from macroeconomic time series and the other from financial asset pricing -- illustrate the advantages of implicit copula models.
翻译:隐性阴极是模拟高度依赖性的最常见的合金选择。 引入和调查了这一大类的合金, 包括椭圆形、 折合金合金、 系数合金、 时间序列合金 和回归式合金。 概述了隐含的合金的共同辅助表示方式, 以及这如何使它们既可缩放又可移植到统计模型中。 诸如参数识别、 离散或混合数据的扩大可能性、 高维度的相包金和 Coupula 模型的模拟等问题都得到了考虑。 概述了巴伊西亚估算合金参数和从隐含的合金模型预测的方法。 特别注意从时间序列和回归模型中构建的隐含合金过程,这是当前研究的前沿。 两个计量经济学应用方法 -- -- 一个来自宏观经济时间序列,另一个来自金融资产定价 -- -- 说明了隐含的合金模型的优点。