Smart contract risk can be defined as a financial risk of loss due to cyber attacks on or contagious failures of smart contracts. Its quantification is of paramount importance to technology platform providers as well as companies and individuals when considering the deployment of this new technology. That is why, as our primary contribution, we propose a structural framework of aggregate loss distribution for smart contract risk under the assumption of a tree-stars graph topology representing the network of interactions among smart contracts and their users. Up to our knowledge, there exist no theoretical frameworks or models of an aggregate loss distribution for smart contracts in this setting. To achieve our goal, we contextualize the problem in the probabilistic graph-theoretical framework using bond percolation models. We assume that the smart contract network topology is represented by a random tree graph of finite size, and that each smart contract is the center of a {random} star graph whose leaves represent the users of the smart contract. We allow for heterogeneous loss topology superimposed on this smart contract and user topology and provide analytical results and instructive numerical examples.


翻译:智能合同风险可以定义为由于网络攻击或智能合同的传染性失败而造成损失的财务风险。它的量化对于技术平台提供商以及公司和个人在考虑部署这种新技术时至关重要。这就是为什么作为我们的主要贡献,我们提出一个结构框架,根据树星图示表层的假设,为智能合同风险和智能合同用户之间互动网络的智能合同风险分配总损失。据我们所知,在这个环境中,没有智能合同总损失分配的理论框架或模型。为了实现我们的目标,我们用债券渗透模型将概率性图形理论框架的问题考虑在内。我们假定,智能合同网络的图象是随机的、有一定大小的树图,每个智能合同都是星图的中心,其树叶代表智能合同的用户。我们允许在这一智能合同和用户表层上进行混杂的损失表层的叠加,并提供分析结果和具有启发性的数字实例。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月18日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员