We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through functional calculus. A spectral GCNN is not tailored to one specific graph and can be transferred between different graphs. It is hence important to study the GCNN transferability: the capacity of the network to have approximately the same repercussion on different graphs that represent the same phenomenon. Transferability ensures that GCNNs trained on certain graphs generalize if the graphs in the test set represent the same phenomena as the graphs in the training set. In this paper, we consider a model of transferability based on graphon analysis. Graphons are limit objects of graphs, and, in the graph paradigm, two graphs represent the same phenomenon if both approximate the same graphon. Our main contributions can be summarized as follows: 1) we prove that any fixed GCNN with continuous filters is transferable under graphs that approximate the same graphon, 2) we prove transferability for graphs that approximate unbounded graphon shift operators, which are defined in this paper, and, 3) we obtain non-asymptotic approximation results, proving linear stability of GCNNs. This extends current state-of-the-art results which show asymptotic transferability for polynomial filters under graphs that approximate bounded graphons.
翻译:我们研究光谱图像神经神经网络(GCNN),过滤器被定义为图形转换操作器(GSO)通过功能微积分的连续功能。光谱GCNN不是根据一个特定的图形定制的,可以在不同图形之间转移。因此,重要的是研究GCNN可转让性:网络对代表相同现象的不同图形具有大致相同的反射力的能力。可转让性确保通过某些图形培训的GCNNN在某些图形下进行概括化。如果测试集中的图形代表了与培训集中的图形相同的现象,则测试集中的图形转换操作器(GSO)。在本文件中,我们考虑一个基于图形分析的可转移性模型。图形是图形的有限对象,在图形模式中,两个图形代表相同现象。如果两者都接近相同的图形,那么我们的主要贡献可以概括如下:(1) 我们证明,任何固定的具有连续过滤器的GCNNNNN在接近同一图形的图形下是可转让的,(2) 我们证明这些图形近似带图形的图形变化操作器变化操作器的可转移性。我们在本文中定义的图形中,以及3,我们获取了直径直径直径的图形的图形的图像结果。